Math and stuff
-
(Z/mZ)⊗(Z/nZ)=0 if m,n are coprime
Proposition (Z/mZ)⊗(Z/nZ)=0 if m,n are coprime. Solution If m,n are coprime, there must exist integers p,q such that pm+qn=1. Let a⊗b∈(Z/mZ)⊗(Z/nZ). \[\begin{align*} a \otimes b &= 1(a \otimes b) \\ &= (pm +...
-
Line length of paths
Proposition Find the length of the following paths: γ(t)=3t+i,−1≤t≤1. γ(t)=i+eiπt,0≤t≤1. γ(t)=isin(t),−π≤t≤π. γ(t)=t−ie−it,0≤t≤2π. Solution 1 $\int_{-1}^{1}...
-
Inverse of a Mobius transformation
Proposition Show that if f(z)=az+bcz+d is a Mobius transformation then f−1(z)=dz−b−cz+a. Solution \[\begin{align*} f^{-1}(f(z)) &= \frac{d(az + b)/(cz + d) - b}{-c(az + b)/(cz + d) + a} \\ &= \frac{d(az + b) - b(cz + d)}{-c(az +...
-
A ring in which every element satisfies xn=x for some n
Proposition Let A be a ring in which every element x satisfies xn=x for some n>1 (depending on x). Show that every prime ideal in A is maximal. Solution Let P be a prime ideal. Let x+P∈A/P be given. Since...
-
1+x is a unit if x is a nilpotent element
Proposition Let x be a nilpotent element of a ring A. Show that 1+x is a unit of A. Deduce that the sum of a nilpotent element and a unit is a unit. Solution Let x be a nilpotent element and xn=0 for some $n \in...