Processing math: 100%
  • (Z/mZ)(Z/nZ)=0 if m,n are coprime

    Proposition (Z/mZ)(Z/nZ)=0 if m,n are coprime. Solution If m,n are coprime, there must exist integers p,q such that pm+qn=1. Let ab(Z/mZ)(Z/nZ). \[\begin{align*} a \otimes b &= 1(a \otimes b) \\ &= (pm +...


  • Line length of paths

    Proposition Find the length of the following paths: γ(t)=3t+i,1t1. γ(t)=i+eiπt,0t1. γ(t)=isin(t),πtπ. γ(t)=tieit,0t2π. Solution 1 $\int_{-1}^{1}...


  • Inverse of a Mobius transformation

    Proposition Show that if f(z)=az+bcz+d is a Mobius transformation then f1(z)=dzbcz+a. Solution \[\begin{align*} f^{-1}(f(z)) &= \frac{d(az + b)/(cz + d) - b}{-c(az + b)/(cz + d) + a} \\ &= \frac{d(az + b) - b(cz + d)}{-c(az +...


  • A ring in which every element satisfies xn=x for some n

    Proposition Let A be a ring in which every element x satisfies xn=x for some n>1 (depending on x). Show that every prime ideal in A is maximal. Solution Let P be a prime ideal. Let x+PA/P be given. Since...


  • 1+x is a unit if x is a nilpotent element

    Proposition Let x be a nilpotent element of a ring A. Show that 1+x is a unit of A. Deduce that the sum of a nilpotent element and a unit is a unit. Solution Let x be a nilpotent element and xn=0 for some $n \in...