An Introduction to Mathematical Cryptography: Corollary 3.44
by Hidenori
We prove Exercise 3.31 from P.184 of An Introduction to Mathematical Cryptography.
(a)
Let $\epsilon = 1/20$.
\[\begin{align*} (\ln X)^{\epsilon} < \ln (L(X)) < (\ln X)^{1 - \epsilon} &\iff (\ln X)^{2\epsilon - 1} < \ln (\ln(X)) < (\ln X)^{1 - 2\epsilon} \\ &\iff (\ln X)^{-9/10} < \ln (\ln(X)) < (\ln X)^{9/10} \end{align*}\]- One can verify that the last inequality is true when $X = 10$ by checking the value.
- We will check the derivative.
- $(\ln X)^{-9/10}$ is obviously decreasing over $[10, \infty)$.
- $\ln (\ln X)$ is obviously increasing over $[10, \infty)$. The derivative of $\ln (\ln X)$ is $\frac{1}{X \ln X}$.
- $((\ln X)^{9/10})’ = \frac{9}{10X (\ln X)^{1/10}}$.
Therefore, at $X = 10$, the inequality holds. Furthermore, the derivative of each satisfies the inequality as well for all $X > 10$. By the Mean Value Theorem, the inequality holds for all $X > 10$.
(b)
First, we will simplify $u$.
\[\begin{align*} u &= \frac{\ln X}{\ln Y} \\ &= \frac{\ln X}{\ln (L(X)^c)} \\ &= \frac{\ln X}{c\ln L(X)} \\ &= \frac{\ln X}{c\sqrt{\ln X \ln \ln X}} \\ &= \frac{1}{c}\sqrt{\frac{\ln X}{\ln \ln X}}. \end{align*}\]Note that we are proving this for a large $X$, so we will not care about some corner cases such as $\ln X = 0$.
\[\begin{align*} u^{-u} = L(X)^{-\frac{1}{2c}(1 + o(1))} &\iff u \ln u = \frac{1}{2c}(1 + o(1))\ln L(X) \\ &\iff \frac{2cu\ln u}{1 + o(1)} = \ln L(X) \\ &\iff \frac{2\sqrt{\frac{\ln X}{\ln \ln X}}\ln \big(\frac{1}{c}\sqrt{\frac{\ln X}{\ln \ln X}}\big)}{1 + o(1)} = \sqrt{(\ln L(X))(\ln \ln X)} \\ &\iff \frac{2\big[-\ln c + \frac{\ln \ln X}{2} - \frac{\ln \ln \ln X}{2}\big]}{1 + o(1)} = \ln \ln X \\ &\iff \frac{-2\ln c + \ln \ln X - \ln \ln \ln X}{\ln \ln X} = 1 + o(1) \\ &\iff \frac{-2\ln c + \ln \ln X - \ln \ln \ln X}{\ln \ln X} - 1 = o(1) \\ &\iff \lim_{X \rightarrow \infty} \frac{-2\ln c + \ln \ln X - \ln \ln \ln X}{\ln \ln X} - 1 = 0 \end{align*}\]Subscribe via RSS