The intersection of two DSets is a DSet
by Hidenori
Proposition
If $B_1$ and $B_2$ are DSets in an FBAS $\ev{V, Q}$ enjoying quorum intersection, then $B = B_1 \cap B_2$ is a DSet, too.
Solution
If $B_1 = V$ or $B_2 = V$, then we are done. Suppose otherwise.
For any $v \in V$,
\[\begin{align*} v \in V \setminus B &\iff v \in V \land v \notin B \\ &\iff v \in V \land (v \notin B_1 \lor v \notin B_2) \\ &\iff (v \in V \land v \notin B_1) \lor (v \in V \land v \notin B_2) \\ &\iff (v \in (V \setminus B_1)) \lor (v \in (V \setminus B_2)) \\ &\iff v \in ((V \setminus B_1) \cup (V \setminus B_2)). \end{align*}\]By definition, $V \setminus B_1$ and $V \setminus B_2$ are both quorums in $\ev{V, Q}$. We have shown that the union of two quorums is a quorum, so $V \setminus B$ is a quorum in $\ev{V, Q}$.
We must now show quorum intersection despite $B$. Let $U_a, U_b$ be quorums in $\ev{V, Q}^B$.
- $U_a \setminus B_1$ is a quorum in $(\ev{V, Q}^B)^{B_1} = \ev{V, Q}^{B_1}$ as shown before.
- Similarly, $U_b \setminus B_1$ is a quorum in $\ev{V, Q}^{B_1}$, and $U_a \setminus B_2$ and $U_b \setminus B_2$ are both quorums in $\ev{V, Q}^{B_2}$.
because $U_a$ is a quorum in $\ev{V, Q}^B$. In other words, $(U_a \setminus B_1) \cup (U_a \setminus B_2) \ne \emptyset$. Similarly, $(U_b \setminus B_1) \cup (U_b \setminus B_2) \ne \emptyset$.
Without loss of generality, assume that $U_a \setminus B_1 \ne \emptyset$.
- $V \setminus B_1$ is a quorum in $\ev{V, Q}$ because $B_1$ is a DSet. Similarly, $V \setminus B_2$ is a quorum in $\ev{V, Q}$. Because $\ev{V, Q}$ enjoys quorum intersection, $(V \setminus B_1) \cap (V \setminus B_2) \ne \emptyset$. In other words, $(V \setminus B_2) \setminus B_1$ is a quorum. As shown before, $(V \setminus B_2) \setminus B_1$ is a quorum in $\ev{V, Q}^{B_1}$.
- $U_a \setminus B_1$ is a quorum in $(\ev{V, Q}^B)^{B_1} = \ev{V, Q}^{B_1}$ for the same reason.
Because $B_1$ is a DSet in $\ev{V, Q}$, $\ev{V, Q}^{B_1}$ enjoys quorum intersection. Therefore, $(U_a \setminus B_1) \cap ((V \setminus B_2) \setminus B_1) \ne \emptyset$.
\[\begin{align*} (U_a \setminus B_1) \cap ((V \setminus B_2) \setminus B_1) &= (U_a \cap (V \setminus B_2)) \setminus B_1 \\ &\subset U_a \cap (V \setminus B_2) \\ &= (U_a \cap V) \setminus B_2 \\ &= U_a \setminus B_2. \end{align*}\]Thus, $U_a \setminus B_2 \ne \emptyset$.
Using the same argument, we can show that $U_b \setminus B_1 \ne \emptyset$ and $U_b \setminus B_2 \ne \emptyset$.
Since $U_a \setminus B_1$ and $U_b \setminus B_1$ are quorums in $\ev{V, Q}^{B_1}$ and $B_1$ is a DSet, $(U_a \setminus B_1) \cap (U_b \setminus B_1) \ne \emptyset$ by the definition of a DSet. This implies $(U_a \cap U_b) \setminus B_1 \ne \emptyset$. Therefore, $U_a \cap U_b \ne \emptyset$.
Subscribe via RSS