Proof of the geometric extension theorem
by Hidenori
Proposition
Prove the Geometric Extension Theorem using the Extension Theorem and Lemma 1. (Ideals, Varieties, and Algorithms)
Solution
First, we will show that $\pi_1(V) \cup (V(c_1, \cdots, c_s) \cap V(I_1)) \subset V(I_1)$.
- $\pi_1(V) \subset V(I_1)$.
- Lemma 1 on P.129 (Ideals, Varieties, and Algorithms)
- $(V(c_1, \cdots, c_s) \cap V(I_1)) \subset V(I_1)$.
- This is trivial.
Next, we will show that $V(I_1) \subset \pi_1(V) \cup (V(c_1, \cdots, c_s) \cap V(I_1))$. Let $(a_2, \cdots, a_n) \in V(I_1) \setminus \pi_1(V)$. If no such element exists, we are done. Since $(a_2, \cdots, a_n) \in V(I_1)$, $(a_2, \cdots, a_n)$ is a partial solution. Since $(a_2, \cdots, a_n) \notin \pi_1(V)$, $\forall a_1 \in k, (a_1, \cdots, a_n) \notin V$. By taking the contrapositive of the Extension Theorem, $(a_2, \cdots, a_n) \in V(c_1, \cdots, c_n)$.
Subscribe via RSS