Elimination ideal calculation
by Hidenori
Proposition
Consider the system of equations
\[\begin{align*} x^2 + 2y^2 &= 3, \\ x^2 + xy + y^2 &= 3. \end{align*}\]- If $I$ is the ideal generated by these equations, find bases of $I \cap k[x]$ and $I \cap k[y]$.
- find all solutions of the equations.
- Which of the solutions are rational?
- What is the smallest field $k$ containing $\mathbb{Q}$ such that all solutions lie in $k^2$?
Solution
1
from sympy import *
from sympy.polys.orderings import monomial_key
x, y = symbols('x y')
print(groebner([x**2 + 2*y**2 - 3, x**2 + x*y + y**2 - 3], x, y, order='lex'))
print(groebner([x**2 + 2*y**2 - 3, x**2 + x*y + y**2 - 3], y, x, order='lex'))
gives
GroebnerBasis([x**2 + 2*y**2 - 3, x*y - y**2, y**3 - y], x, y, domain='ZZ', order='lex')
GroebnerBasis([x**3 - 3*x + 2*y, x**4 - 4*x**2 + 3], y, x, domain='ZZ', order='lex')
By the Elimination Theorem (P.122, Ideals, Varieties, and Algorithms), $I \cap k[x]$ is generated by $x^4 - 4x^2 + 3$ and $I \cap k[y]$ is generated by $y^3 - y$.
2
It seems easier to solve $y^3 - y = 0$. This has 3 solutions.
- If $y = 0$, then $x^2 = 3$, so $x = \pm \sqrt{3}$. Then $(x, y) = (\pm \sqrt{3}, 0)$ are solutions.
- If $y = 1$, then $x^2 + 2 = 3$ and $x^2 + x = 2$. Then $(x, y) = (1, 1)$ is a solution.
- If $y = -1$, then $x^2 + 2 = 3$ and $x^2 - x = 2$. Then $(x, y) = (-1, 1)$ is a solution.
Therefore, $(\pm \sqrt{3}, 0), (\pm 1, 1)$ are all the solutions.
3
$(\pm 1, 1)$.
4
$k = \mathbb{Q}[\sqrt{3}]$.
Subscribe via RSS