Parametrization of a parabola
by Hidenori
Proposition
Use a trigonometric identity to show that
\[\begin{align*} x &= \cos(t), \\ y &= \cos(2t) \end{align*}\]parametrizes a portion of a parabola. Indicate exactly what portion of the parabola is covered.
Solution
Since $\cos(2t) = 2\cos^2(t) - 1$, $y = 2x^2 - 1$. Since $x, y \in [-1, 1]$, this parametrization covers $y = 2x^2 - 1$ where $x \in [-1, 1]$.
Subscribe via RSS