Orderings on the monomials
by Hidenori
Proposition
Rewrite each of the following polynomials, ordering the terms using the lex order, grlex order, and the grevlex order, giving $\LM(f), \LT(f)$ and $\multideg(f)$ in each case.
- $f(x, y, z) = 2x + 3y + z + x^2 - z^2 + x^3$.
- $f(x, y, z) = 2x^2y^8 - 3x^5yz^4 + xyz^3 - xy^4$.
Solution
1
- lex: $x^3 + x^2 + 2x + 3y - z^2 + z$.
- $\LM(f) = x^3$.
- $\LT(f) = x^3$.
- $\multideg(f) = 3$.
- grlex: $x^3 + x^2 - z^2 + 2x - 3y + z$.
- $\LM(f) = x^3$.
- $\LT(f) = x^3$.
- $\multideg(f) = 3$.
- grevlex: $x^3 - z^2 + x^2 + z - 3y + 2x$.
- $\LM(f) = x^3$.
- $\LT(f) = x^3$.
- $\multideg(f) = 3$.
2
- lex: $-3x^5yz^4 + 2x^2y^8 - xy^4 + xyz^3$.
- $\LM(f) = x^5yz^4$.
- $\LT(f) = -3x^5yz^4$.
- $\multideg(f) = 10$.
- grlex: $-3x^5yz^4 + 2x^2y^8 - xy^4 + xyz^3$.
- $\LM(f) = x^5yz^4$.
- $\LT(f) = -3x^5yz^4$.
- $\multideg(f) = 10$.
- grevlex: $2x^2y^8 - 3x^5yz^4 - xy^4 + xyz^3$.
- $\LM(f) = x^2y^8$.
- $\LT(f) = 2x^2y^8$.
- $\multideg(f) = 10$.
Subscribe via RSS