Homotopy equivalence is an equivalence relation on the class of all topological spaces.
by Hidenori
Proposition
Homotopy equivalence is an equivalence relation on the class of all topological spaces.
Solution
Let $X, Y, Z$ be given.
The identity mapping $i_X$ on $X$ is continuous. Moreover, $i_X \circ i_X = i_X$, so $i_X \circ i_X \simeq i_X$. Therefore, $X \simeq X$.
Suppose $X \simeq Y$. Then there exist continuous functions $\phi: X \rightarrow Y, \psi: Y \rightarrow X$ such that $\phi \circ \psi \simeq i_Y$ and $\psi \circ \phi \simeq i_X$. This means we have $\psi$ and its homotopy inverse, so $Y$ is homotopic equivalent to $X$.
Suppose $X \simeq Y$ and $Y \simeq Z$. Then there exist continuous functions $\phi: X \rightarrow Y, \phi’: Y \rightarrow Z$ and their homotopy inverses $\psi: Y \rightarrow X, \psi’: Z \rightarrow Y$, respectively.
$\phi’ \circ \phi$ is a continuous map from $X$ to $Z$ and we claim that $\psi \circ \psi’$ is a homotopy inverse for $\phi’ \circ \phi$. Let $F, F’$ be homotopies connecting $\phi \circ \psi$ to $i_Y$, and $\phi’ \circ \psi’$ to $i_Z$, respectively.
Let $G: Z \times I \rightarrow Z$ such that
\[\begin{align*} G(z, t) &= \begin{cases} \phi'(F(\psi'(z), 2t)) & (t \in [0, 1/2]) \\ F'(z, 2t - 1) & (t \in [1/2, 1]). \end{cases} \end{align*}\]$G$ is continuous by the pasting lemma.
- $G(z, 0) = \phi’(F(\psi’(z), 0)) = \phi’(\phi(\psi(\psi’(z))))$.
- $G(z, 1) = F’(z, 1) = i_Z(z) = z$.
Thus $G$ is a homotopy connecting $\phi’ \circ \phi \circ \psi \circ \psi’$ to $i_Z$.
Now let $F, F’$ be homotopies connecting $\psi \circ \phi$ to $i_X$, and $\psi’ \circ \phi’$ to $i_Y$, respectively. (Overriding the notations since I’m running out of suitable letters.)
Similarly, let $H: X \times I \rightarrow X$ such that
\[\begin{align*} H(x, t) &= \begin{cases} \psi(F'(\phi(x), 2t)) & (t \in [0, 1/2]) \\ F(x, 2t - 1) & (t \in [1/2, 1]). \end{cases} \end{align*}\]$H$ is continuous by the pasting lemma.
- $G(z, 0) = \phi’(F(\psi’(z), 0)) = \phi’(\phi(\psi(\psi’(z))))$.
- $G(z, 1) = F’(z, 1) = i_Z(z) = z$.
Thus $H$ is a homotopy connecting $\psi \circ \psi’ \circ \phi’ \circ \phi$ to $i_X$.
Therefore, $\psi \circ \psi’$ is a homotopy inverse of $\phi’ \circ \phi$, so $X \simeq Z$.
Subscribe via RSS